2.7 Solving Problems Involving More than One Right Triangle

FOCUS Use trigonometric ratios to solve problems that involve more than one right triangle.

When a problem involves more than one right triangle, we can use information from one triangle to solve the other triangle.

Example 1 Solving a Problem with Two Triangles

Find the length of BC to the nearest tenth of a centimetre.

![Diagram of triangle ABD with angles and sides labeled]

To solve a right triangle we must know:
- the lengths of two sides, or
- the length of one side and the measure of one acute angle

Solution

First use \(\triangle ABD \) to find the length of BD.

\[
\sin A = \frac{\text{opposite}}{\text{hypotenuse}}
\]

\[
\sin A = \frac{BD}{AB}
\]

\[
\sin 26^\circ = \frac{BD}{22.9}
\]

\[
22.9 \sin 26^\circ = BD
\]

\[
BD = 10.0386\ldots
\]

Do not clear the calculator screen.

In \(\triangle BCD \), find the length of BC.

\[
\sin C = \frac{\text{opposite}}{\text{hypotenuse}}
\]

\[
\sin C = \frac{BD}{BC}
\]

\[
\sin 49^\circ = \frac{10.0386\ldots}{BC}
\]

\[
BC \sin 49^\circ = 10.0386\ldots
\]

\[
BC = \frac{10.0386\ldots}{\sin 49^\circ}
\]

\[
BC = 13.3014\ldots
\]

BC is about 13.3 cm long.
1. Find the measure of $\angle F$ to the nearest degree.

Use $\triangle DEG$ to find the length of EG. Use the sine ratio.

$$\sin D = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\sin D =$$

$$\sin ____ =$$

$$EG =$$

In $\triangle EFG$, use the ______ ratio to find $\angle F$.

The measure of $\angle F$ is about ______.

The angle of elevation is the angle between the horizontal and a person's line of sight to an object above.
Example 2 Solving a Problem Involving Angle of Elevation

Jason is lying on the ground midway between two trees, 100 m apart. The angles of elevation of the tops of the trees are 13° and 18°. How much taller is one tree than the other? Give the answer to the nearest tenth of a metre.

Solution

Jason is midway between the trees. So, the distance from Jason to the base of each tree is: \(\frac{100\, m}{2} = 50\, m \)

Use \(\triangle JKM \) to find the length of JK.

We know \(\angle M = 13° \).
JK is opposite \(\angle M \).
JM is adjacent to \(\angle M \).
Use the tangent ratio.

\[
\tan M = \frac{\text{opposite}}{\text{adjacent}} = \frac{JK}{JM}
\]

Substitute: \(\angle M = 13° \) and JM = 50

\[
tan 13° = \frac{JK}{50}
\]

\[
50 \tan 13° = JK
\]

JK = 11.5434…

Use \(\triangle MNP \) to find the length of NP.

We know \(\angle M = 18° \).
NP is opposite \(\angle M \).
MP is adjacent to \(\angle M \).
Use the tangent ratio.

\[
\tan M = \frac{\text{opposite}}{\text{adjacent}} = \frac{NP}{MP}
\]

Substitute: \(\angle M = 18° \) and MP = 50

\[
tan 18° = \frac{NP}{50}
\]

\[
50 \tan 18° = NP
\]

NP = 16.2459…

To find how much taller one tree is than the other, subtract:

16.2459… m – 11.5434… m = 4.7025… m

One tree is about 4.7 m taller than the other.
1. The angle of elevation of the top of a tree, T, is 27°. From the same point on the ground, the angle of elevation of a hawk, H, flying directly above the tree is 43°. The tree is 12.7 m tall. How high is the hawk above the ground? Give your answer to the nearest tenth of a metre.

We want to find the length of HG. Use \(\triangle QTG \) to find the length of QG. Use the tangent ratio.

\[
\tan Q = \frac{QG}{GT}
\]

Substitute: \(\tan 27° \) and \(\tan 43° \)

\[
\tan _____ = ________
\]

\[
QG = ________
\]

In \(\triangle QHG \), use the tangent ratio to find HG.

\[
HG = ________
\]

The hawk is about ________ above the ground.

The **angle of depression** is the angle between the horizontal and a person’s line of sight to an object below.
From a small plane, V, the angle of depression of a sailboat is 21°.
The angle of depression of a ferry on the other side of the plane is 52°.
The plane is flying at an altitude of 1650 m.
How far apart are the boats, to the nearest metre?

Solution

We want to find the length of UW.
The angle of depression of the sailboat is 21°.
So, in $\triangle UVX$, $\angle V = 90^\circ - 21^\circ$, or 69°.

Use $\triangle UVX$ to find the length of UX.

\[
\tan V = \frac{\text{opposite}}{\text{adjacent}}
\]

\[
\tan V = \frac{UX}{VX}
\]

\[
\tan 69^\circ = \frac{UX}{1650}
\]

$1650 \tan 69^\circ = UX$

$UX = 4298.3969\ldots$

The angle of depression of the ferry is 52°.
So, $\angle V$ in $\triangle VWX$ is: $90^\circ - 52^\circ$, or 38°.

Use $\triangle VWX$ to find the length of WX.

\[
\tan V = \frac{\text{opposite}}{\text{adjacent}}
\]

\[
\tan V = \frac{WX}{VX}
\]

\[
\tan 38^\circ = \frac{WX}{1650}
\]

$1650 \tan 38^\circ = WX$

$WX = 1289.1212\ldots$

To find the distance between the boats, add:
$4298.3969\ldots \text{ m} + 1289.1212\ldots \text{ m} = 5587.5182\ldots \text{ m}$

The boats are about 5588 m apart.
Check

1. This diagram shows a falcon, F, on a tree, with a squirrel, S, and a chipmunk, C, on the ground. From the falcon, the angles of depression of the animals are 36° and 47°. How far apart are the animals on the ground to the nearest tenth of a metre?

We want to find the length of CS.

\[CS = GS - GC \]

The angle of depression of the squirrel is _____.

So, \(\angle F \) in \(\triangle FSG \) is: \(90^\circ - _____ \), or _____.

Use \(\triangle FSG \) to find the length of GS.

\[\tan ____ = \frac{_____}{_____} \]

\[\tan ____ = \frac{_____}{_____} \]

\[\tan ____ = \frac{_____}{_____} \]

\[GS = \frac{_____}{_____} \]

The angle of depression of the chipmunk is _____.

So, \(\angle F \) in \(\triangle FCG \) is: \(90^\circ - _____ \), or _____.

Use \(\triangle FCG \) to find the length of GC.

\[GC = \frac{_____}{_____} \]

To find the distance between the animals, subtract:

\(\frac{_____}{_____} - \frac{_____}{_____} = \frac{_____}{_____} \)

The animals on the ground are about _____ apart.
1. Find the measure of $\angle C$ to the nearest degree.

 Use $\triangle ABD$ to find the length of BD.

 Use the tangent ratio.

 $\tan A = \frac{\text{opp}}{\text{adj}}$

 $\tan A = \frac{\text{opp}}{\text{adj}}$

 $\tan ____ = ____$

 $BD = \text{opp}$

 In $\triangle BCD$, use the _____ ratio to find $\angle C$.

 The measure of $\angle C$ is about ________.
2. Two guy wires support a flagpole, FH. The first wire is 11.2 m long and has an angle of inclination of 39°. The second wire has an angle of inclination of 47°. How tall is the flagpole to the nearest tenth of a metre?

We want to find the length of FH. Use \(\triangle EGH \) to find the length of EH. Use the cosine ratio.

\[
\cos E = \frac{EH}{EH}
\]

\[
\cos E = \frac{11.2}{EH}
\]

\[
\cos \theta = \frac{EH}{11.2}
\]

\[
EH = \frac{11.2}{\cos \theta}
\]

In \(\triangle EFH \), use the ______ ratio to find the length of FH.

\[
FH = \frac{EH}{\cos \phi}
\]

The flagpole is about ______ tall.
3. A mountain climber is on top of a mountain that is 680 m high. The angles of depression of two points on opposite sides of the mountain are 48° and 32°. How long would a tunnel be that runs between the two points? Give your answer to the nearest metre.

We want to find the length of QN.

The angle of depression of point Q is _____.

So, \(\angle M \) in \(\triangle PQM \) is: \(90^\circ - \), or _____.

Use \(\triangle PQM \) to find the length of PQ.

Use the ______ ratio.

\[
\text{PQ} = \text{___________}
\]

The angle of depression of point N is _____.

So, \(\angle M \) in \(\triangle PMN \) is: \(90^\circ - \), or _____.

Use \(\triangle PMN \) to find the length of PN.

Use the ______ ratio.

\[
\text{NP} = \text{___________}
\]

The length of the tunnel is: _____ = _____ + _____

\[
\text{QN} = \text{___________}
\]

The tunnel would be about ________ long.